ABSTRACT
Two pair reducer is developed very quickly in recent year due to its features such as its simple and compact structure,high driving ratio,large loading capacity and high driving efficiency. But some problems,including great noises,high temperature and the early-worm of bearings oceurring under the condition of high-sheep operation,heavy loading and high transmission ratio,influenced seriously its popularization progerss and are urgent to be solved.
Based on the study of driving principle of current two pair reducer,this dissertation suggested a two-stage coaxial double-ring reducer in the purpose of solving the high vibration and noise problems of two pair reducer under the condition of high-speed and heavy-load operation,Which consists of one-stage cylindrical gearing and one-stage dual-ring gearing.Bases on the analysis of the transmission theory,kinematics,dynamics of the suggested reducer,the anthor designed and manufactured a prototype of the suggested reducer,made some relevant researches and got a satisfying result.The major research works in the paper are listed as follows:
Provided a new-structured two pair reducer two-stage coaxial dual-ring gear reducer,set up its three-dimension model and assembled the model in the virtual condition,analyzed the structure and forces bearing situation of the new reducer 。
Caculated the contact stress of the inner meshing of the dual-ring reducer by means of finite elements method, and learned the maximum stress value and the actual pairs of contact teeth,which became a reliable source for selecting geometry parameter of reducer.
Caculated the inner excitation of gear resulting from varying stiffness and error of gear, analyzed the response of the system by means of vibration superprosition method based on coupling system mode,and predicted the dynamic response of the dual-ring reducer under dynamic inner excitation,and made a broad study of the dynamic characteristics of the reducer.
Designed and manufactured a prototype and tested pacrtieally its effieieney and the dynamic characteristies on gearing system dynamic experiment desk. The test result indicated that the two-stage coaxial double-ring reducer reached an efficiency of 90% and is improved on the vibration.
Key Word: Reducer ,Dynamic Characteristics ,Finite Element
目 錄
摘 要: i
ABSTRACT ii
目 錄 1
緒 論 4
1.1課題來源及研究的意義 4
1.2兩級減速器目前的現(xiàn)狀 4
1.3齒輪傳動系統(tǒng)動力學(xué)國內(nèi)外研究現(xiàn)狀 5
第二章 傳動系統(tǒng)運動分析計算 6
2.1工作機(jī)轉(zhuǎn)速和所需功率計算 6
2.1.1工作機(jī)(卷筒)轉(zhuǎn)速計算 6
2.1.2工作機(jī)所需功率的計算 6
2.2電動機(jī)的選擇 6
2.2.1電動機(jī)類型和結(jié)構(gòu)類型的選擇 6
2.2.2電機(jī)容量的選擇 6
2.2.3電動機(jī)轉(zhuǎn)速的確定 7
2.2.4計算傳動裝置的運動和動力參數(shù) 8
2.2.5計算各軸輸入功率 8
2.2.6計算各軸輸入轉(zhuǎn)矩 9
第三章 傳動零件的設(shè)計計算 9
3.1直齒圓錐齒輪 9
3.2齒輪各項參數(shù)確定 10
3.2.1齒數(shù) 10
3.2.2模數(shù) 11
3.2.3大端分度圓直徑 11
3.2.4節(jié)錐頂距 11
3.2.5節(jié)圓錐角 11
3.2.6大端齒頂圓直徑 11
3.2.7齒寬b 12
3.2.8齒寬中點分度圓上的名義切向力的計算 12
3.2.9接觸強(qiáng)度計算的有效齒寬的計算 12
3.2.10接觸強(qiáng)度計算的齒向載荷分布因數(shù)的計算 13
3.2.11接觸強(qiáng)度計算的錐齒輪因數(shù)的確定 13
3.2.12材料彈性模量系數(shù)的確定 13
3.2.13動載因數(shù)的確定 13
3.2.14齒間載荷分配因數(shù)的確定 13
3.2.15接觸強(qiáng)度計算的壽命因數(shù)的確定 14
3.2.16齒面工作硬化因數(shù)的確定 14
3.2.17尺寸因數(shù)的確定 14
3.3直齒圓錐齒輪輪齒彎曲強(qiáng)度校核 15
3.3.1彎曲強(qiáng)度安全因數(shù)的確定 17
3.3.2齒輪尺寸 17
3.3.3斜齒圓柱輪 17
3.3.4齒輪 17
第四章 初步確定齒輪的主要參數(shù) 18
4.1按接觸強(qiáng)度估算齒輪中心距 18
4.2按齒根彎曲強(qiáng)度估算齒輪模數(shù) 18
4.3初定齒輪幾何參數(shù) 19
4.4計算圓周速度,選擇齒輪精度等級 20
4.5校核齒面接觸疲勞強(qiáng)度 20
4.5.1材料彈性模量系數(shù)的確定 21
4.5.2重合度因數(shù)的確定 21
4.5.3螺旋角因數(shù)的確定 21
4.5.4計算齒面接觸應(yīng)力 21
4.5.5確定式中各參數(shù): 22
4.5.6潤滑因數(shù)的確定 22
4.5.7齒面工作硬化因數(shù)的確定 22
4.5.8尺寸因數(shù)的確定 22
4.5.9接觸強(qiáng)度安全因數(shù) 23
第五章 校核齒根彎曲疲勞強(qiáng)度 23
5.1計算齒根彎曲應(yīng)力 23
5.1.1確定式中各參數(shù): 23
5.1.2綜合齒形系數(shù) 23
5.1.3重合度因數(shù) 24
5.1.4螺旋角因數(shù) 24
5.1.5計算彎曲應(yīng)力: 24
5.1.6計算彎曲強(qiáng)度安全因數(shù) 24
5.1.7齒輪尺寸 26
第六章 傳動軸承和傳動軸的設(shè)計 26
6.1計算輸出軸上的功率、轉(zhuǎn)速和轉(zhuǎn)矩 26
6.2計算作用在齒輪上的力 26
6.3初步確定軸的最小直徑 27
第七章 軸的結(jié)構(gòu)設(shè)計 27
7.1擬定軸上零件的裝配方案 27
7.2初步選擇滾動軸承 28
7.2.1確定安裝齒輪處軸段的直徑 28
7.3確定齒輪右邊軸環(huán)的直徑和長度 28
7.4確定軸上零件的周向固定 29
7.5確定軸上圓角和倒角尺寸 29
7.6選擇軸的材料 29
7.7計算軸上載荷 29
7.7.1水平面內(nèi) 30
7.7.2垂直面內(nèi) 30
7.7.3總彎矩和轉(zhuǎn)矩 30
7.7.4按彎扭合成應(yīng)力校核軸的強(qiáng)度 31
7.8滾動軸承壽命計算 32
7.9計算軸向載荷 33
7.9.1計算當(dāng)量動載荷, 33
7.9.2驗算軸承額定壽命 33
第八章 總結(jié) 34
參考文獻(xiàn) 34
致謝 35